Page de couverture de A Simple Guide to Retrieval Augmented Generation

A Simple Guide to Retrieval Augmented Generation

Aperçu
Essayer pour 0,00 $
Choisissez 1 livre audio par mois dans notre incomparable catalogue.
Écoutez à volonté des milliers de livres audio, de livres originaux et de balados.
L'abonnement Premium Plus se renouvelle automatiquement au tarif de 14,95 $/mois + taxes applicables après 30 jours. Annulation possible à tout moment.

A Simple Guide to Retrieval Augmented Generation

Auteur(s): Abhinav Kimothi
Narrateur(s): Christopher Kendrick
Essayer pour 0,00 $

14,95$ par mois après 30 jours. Annulable en tout temps.

Acheter pour 25,00 $

Acheter pour 25,00 $

À propos de cet audio

Everything you need to know about Retrieval Augmented Generation in one human-friendly guide.

Augmented Generation (or RAG) enhances an LLM’s available data by adding context from an external knowledge base, so it can answer accurately about proprietary content, recent information, and even live conversations. RAG is powerful, and with A Simple Guide to Retrieval Augmented Generation, it’s also easy to understand and implement!

In A Simple Guide to Retrieval Augmented Generation you’ll learn:

The components of a RAG system

How to create a RAG knowledge base

The indexing and generation pipeline

Evaluating a RAG system

Advanced RAG strategies

RAG tools, technologies, and frameworks

A Simple Guide to Retrieval Augmented Generation gives an easy, yet comprehensive, introduction to RAG for AI beginners. You’ll go from basic RAG that uses indexing and generation pipelines, to modular RAG and multimodal data from images, spreadsheets, and more.

About the Book

A Simple Guide to Retrieval Augmented Generation is a plain-English guide to RAG. The book is easy to follow and packed with realistic Python code examples. It takes you concept-by-concept from your first steps with RAG to advanced approaches, exploring how tools like LangChain and Python libraries make RAG easy. And to make sure you really understand how RAG works, you’ll build a complete system yourself, even if you’re new to AI!

About the Author

Abhinav Kimothi is a seasoned data and AI professional. He has spent over 15 years in consulting and leadership roles in data science, machine learning and AI, and currently works as a Director of Data Science at Sigmoid.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2025 Manning Publications (P)2025 Manning Publications
Informatique Programmation et développement de logiciels Science des données Apprentissage automatique Technologie Logiciel
Pas encore de commentaire