Obtenez 3 mois à 0,99 $/mois + 20 $ de crédit Audible

OFFRE D'UNE DURÉE LIMITÉE
Page de couverture de 株式会社ずんだもん技術室AI放送局 podcast 20251113

株式会社ずんだもん技術室AI放送局 podcast 20251113

株式会社ずんだもん技術室AI放送局 podcast 20251113

Écouter gratuitement

Voir les détails du balado

À propos de cet audio

youtube版(スライド付き) 関連リンク AIエージェントメモリの話 AIエージェントがまるで人間のように「記憶」を持つにはどうすれば良いか、その技術的な仕組みについて解説した記事ですね。新人エンジニアの方も、この要約を読めばAIエージェントの頭の中が少し理解できるようになるはずです。 まず、AIエージェントは「記憶」そのものを持っているわけではありません。実は、大規模言語モデル(LLM)が会話の流れを理解するために、必要な情報を一時的に「コンテキストウィンドウ」と呼ばれる場所に詰め込んでいるだけなんです。しかし、この窓の大きさには限りがあるため、過去の会話全てを記憶することはできません。 そこで、AIエージェントのメモリは大きく3つの層で管理されています。 短期メモリ(会話履歴): 直近の会話を覚えておく部分です。これはLLMのコンテキストウィンドウに直接入力されます。長期メモリ(セマンティックリコール): 過去の膨大な会話の中から、現在の会話と「意味的に関連性の高い情報」を検索して取り出す仕組みです。このために、会話内容を数値のベクトル(埋め込み)に変換し、似たようなベクトルを探す「ベクトル検索」という技術が使われます。ワーキングメモリ: 特定のユーザーに関する情報など、会話全体を通じて永続的に保持・更新したい情報を管理する部分です。これはMastraというサービスで特に注目されています。 これらのメモリ管理機能は、AWSのAmazon Bedrock Agentsや、国内のAI開発プラットフォームであるMastraといったサービスで提供されています。特に、Amazon Bedrock AgentCore Memoryは2025年10月に正式リリースされたマネージドサービスで、短期・長期記憶を統合的に管理し、豊富なAPIで様々なユースケースに対応できるようになっています。Mastraでは、このAgentCore MemoryのAPIを呼び出す「ツール」をAIエージェントに組み込むことで、より賢く振る舞うAIエージェントを開発できる事例が紹介されています。実際のコードもGitHubで公開されており、皆さんの開発の参考になるでしょう。 将来的には、現在のメモリ技術には限界があり、時間軸を考慮した「Temporal Knowledge Graph」のような、より高度な記憶管理方法が研究されています。AIエージェントが本当に賢くなるためには、この「記憶」の進化がカギとなるでしょう。 引用元: https://www.docswell.com/s/harinezumi/KJQPRX-2025-11-12-083604 RAGの検索結果を並び替えるだけで高速化する手法 RAGと高速化の必要性 RAG(Retrieval Augmented Generation)は、大規模言語モデル(LLM)が質問に答える際、外部の知識ベースから関連情報を「検索」し、それに基づいて回答を「生成」する技術です。これにより、LLMが学習していない最新情報や特定のデータにも対応できるようになり、LLMの弱点を補強します。しかし、RAGには課題があります。LLMに渡す情報(これを「コンテキスト」と呼びます)が長くなると、LLMがその情報を処理するのに時間がかかり、回答が遅くなりがちです。また、LLMへの入力が増えると、利用コストも高くなります。特に、複数のRAG処理を組み合わせて複雑なタスクをこなす「Agent」システムでは、RAGを何度も使うため、この速度やコストの問題が顕著になります。 「RAGBoost」:2つの工夫でRAGを速くする 今回紹介する「RAGBoost」は、このRAGの処理速度とコストを改善するための新しい手法です。主に二つの「キャッシュ」(一度使った情報を一時的に保存しておき、次から再利用する仕組み)を賢く活用することで、RAGを効率的に高速化します。 1. 過去の検索結果を効率的に再利用する AgentのようにRAGを繰り返し使う場合、実は同じような情報源(ドキュメント)を何度も検索結果として取得することがよくあります。RAGBoostでは、一度LLMに渡したドキュメントは、次からはその内容全体ではなく「ID」で、「これは前に見たDoc ID XXX番と同じ情報だよ」と伝えます。 これは、初めて読む本はすべて読みますが、前に読んだことがある本なら「あの青い表紙の本と同じ内容だよ」と伝えるだけで済ませるイメージです。これにより、LLMが毎回同じドキュメントの全文を再処理する手間が...
Pas encore de commentaire