Obtenez 3 mois à 0,99 $/mois + 20 $ de crédit Audible

OFFRE D'UNE DURÉE LIMITÉE
Page de couverture de 株式会社ずんだもん技術室AI放送局 podcast 20251119

株式会社ずんだもん技術室AI放送局 podcast 20251119

株式会社ずんだもん技術室AI放送局 podcast 20251119

Écouter gratuitement

Voir les détails du balado

À propos de cet audio

youtube版(スライド付き) 関連リンク Start building with Gemini 3 Googleは、これまでで最もインテリジェントなAIモデル「Gemini 3 Pro」を発表しました。このモデルは、新人エンジニアの方でも、あなたのアイデアをAIを活用したアプリケーションとして実現できる、非常にパワフルなツールです。 Gemini 3 Proは、これまでのモデルを大きく上回る性能を持ち、特にAIの評価基準やコーディングタスクで優れた結果を出しています。AIが自律的に複雑なタスクを処理したり、ゼロからのコーディングもこなしたりする「エージェントワークフロー」において、その真価を発揮します。 開発者は、Google AI Studioや企業向けのVertex AIを通じて、Gemini APIを利用してGemini 3 Proにアクセスできます。これにより、既存の開発プロセスにAIの力を簡単に組み込むことができます。 また、Gemini 3 Proは、開発のあり方を大きく変える可能性を秘めています。 一つは「Agentic coding(エージェントコーディング)」です。これは、AIが自らコードの生成、デバッグ、リファクタリングといった一連の作業を計画し実行する、自律的なコーディングを可能にします。Google Antigravityという新しいエージェント開発プラットフォームを使えば、まるでAIアシスタントと共同作業するように、タスクベースで開発を進められます。エディタ、ターミナル、ブラウザを横断してAIが動くイメージです。 もう一つは「Vibe coding(バイブコーディング)」です。これは、自然言語でアイデアを伝えるだけで、AIがその意図を理解し、インタラクティブなアプリケーションを自動で生成してくれるという画期的なアプローチです。複雑なコーディング知識がなくても、あなたのひらめきを直接アプリの形にできます。Google AI Studioで、たった一つのプロンプト(命令文)からゲームやウェブサイトを開発することも可能です。 さらに、Gemini 3 Proは「マルチモーダル理解」においても進化を遂げています。これは、テキストだけでなく、画像や動画、さらには空間的な情報までを総合的に理解する能力です。例えば、複雑な書類の内容を正確に読み解いたり、動画の中の動きを高速に認識したり、ロボットや自動運転車の空間認識能力を高めたりできます。画面の要素やユーザーの操作意図を理解し、コンピュータ操作を自動化するような「Visual Computer」といった新しい体験も可能になります。 Gemini 3 Proは、開発者がAIを活用して、これまでにないものを作り出すための強力な基盤となるでしょう。既存のツールやワークフローにシームレスに組み込まれ、あなたの創造性を最大限に引き出すことを目指しています。ぜひGoogle AI StudioでGemini 3 Proを試し、AIとの新しい開発体験を始めてみてください。 引用元: https://blog.google/technology/developers/gemini-3-developers/ Solving a Million-Step LLM Task with Zero Errors この論文は、大規模言語モデル(LLM)が抱える「長大なタスクをエラーなく実行できない」という課題に対し、画期的な解決策を提示しています。これまでのLLMは、思考やツールの利用で素晴らしい進歩を見せていますが、人間や組織が行うような何百、何千ものステップを要する複雑なプロセスになると、どこかで間違いが生じ、途中で処理が破綻してしまうことが課題でした。例えば、有名な「ハノイの塔」のような古典的な問題解決タスクのベンチマーク実験では、わずか数百ステップで処理が立ち行かなくなることが示されています。 本論文で紹介されている「MAKER」というシステムは、この問題を克服し、なんと100万ステップを超えるLLMタスクを「エラーゼロ」で成功させることに世界で初めて成功しました。これは、理論上さらに大規模なタスクにも対応できる可能性を秘めています。 MAKERのアプローチの鍵は、二つの革新的な要素にあります。 一つ目は、「極端なタスク分解(extreme decomposition)」です。これは、非常に複雑な一つの大きなタスクを、それぞれが非常にシンプルで実行しやすい「マイクロエージェント」と呼ばれる専門の小さなAIプログラムに割り振られる、極めて細かなサブタスクへと徹底的に分解する手法です。これにより、各ステップ...
Pas encore de commentaire