Obtenez 3 mois à 0,99 $/mois + 20 $ de crédit Audible

OFFRE D'UNE DURÉE LIMITÉE
Page de couverture de 株式会社ずんだもん技術室AI放送局 podcast 20251120

株式会社ずんだもん技術室AI放送局 podcast 20251120

株式会社ずんだもん技術室AI放送局 podcast 20251120

Écouter gratuitement

Voir les détails du balado

À propos de cet audio

関連リンク Building more with GPT-5.1-Codex-Max 日本の新人エンジニアの皆さん、こんにちは!OpenAIから、皆さんの開発を大きく助けてくれる新しいAIエージェント型コーディングモデル「GPT-5.1-Codex-Max」が発表されました。これは、これまでのAIモデルの限界を超え、より賢く、速く、そして効率的にコード開発をサポートすることを目指しています。 何が新しいの? このモデルの最大の進化は、「Compaction(コンパクション)」という新しい技術によって、「長時間の詳細な作業」をこなせるようになった点です。これまでのAIは、一度に扱える情報量(コンテキストウィンドウ)に限りがあり、長い時間のかかる複雑なタスクでは途中で「あれ?何してたっけ?」となってしまうことがありました。 しかし、GPT-5.1-Codex-Maxは、まるで人間がメモを取りながら考えるように、必要に応じて過去の情報を整理・圧縮することで、何百万ものトークンを扱う大規模なプロジェクトのリファクタリングや、数時間にわたるデバッグセッション、さらには自律的なエージェントループまで、途切れることなく作業を続けられるようになりました。社内評価では24時間以上も独立して作業し、テストの失敗修正までこなした例もあるそうです。 開発体験はどう変わる? 高速・高効率・低コスト: より少ないトークンで高い性能を発揮するため、開発コストの削減にも繋がります。例えば、高品質なフロントエンドデザインを、以前より低いコストで作成できるようになりました。実践的な開発作業に強い: PR(プルリクエスト)の作成、コードレビュー、フロントエンドコーディング、Q&Aなど、実際のソフトウェア開発現場で必要とされるタスクに特化して学習されています。なんと、Windows環境での動作にも対応しました。 利用方法と注意点 GPT-5.1-Codex-Maxは、現在、CodexのCLI(コマンドラインインターフェース)、IDE(統合開発環境)拡張機能、クラウド、コードレビューなどで利用可能です。APIアクセスも近日提供予定です。 ただし、AIエージェントの利用にはいくつかの注意点があります。 人間による確認の重要性: AIが生成したコードやレビュー結果は、最終的には人間が確認し、承認することが非常に重要です。AIはあくまで強力な「共同作業者」であり、人間の「代替」ではありません。セキュリティ: Codexはデフォルトで安全なサンドボックス環境で動作しますが、インターネットアクセスなどを有効にする場合は、プロンプトインジェクションなどのリスクに注意が必要です。 OpenAI社内では、すでにエンジニアの95%が週にCodexを利用し、プルリクエストの提出数が約70%も増加したとのこと。GPT-5.1-Codex-Maxは、皆さんの開発生産性を劇的に向上させる可能性を秘めています。この新しいツールをぜひ活用して、素晴らしいものを生み出してください! 引用元: https://openai.com/index/gpt-5-1-codex-max LLMで業務ワークフローを自動生成・最適化する! 〜ワークフロー自動生成・最適化の取り組みについて〜 LLM(大規模言語モデル)は様々なタスクに利用できますが、複数のステップを組み合わせるような複雑な業務を丸ごと任せるのは難しい場合があります。そこで注目されているのが、LLMとプログラミングコード(Pythonなど)を組み合わせて、複雑なタスクを効率的に処理する「AIワークフロー」です。例えば、「文章を要約する」→「情報を抽出する」→「整形する」といった流れを自動化します。 しかし、このAIワークフローを作るには、「どんなステップを組み合わせるか」「各ステップでどんな指示(プロンプト)を出すか」といった設計に、多くの時間と手間がかかるのが課題でした。また、LLMのアップデートや扱うデータが変わると、ワークフローを修正する必要があり、これが運用上の負担となっていました。 LayerXでは、これらの課題を解決するために、AIワークフローを自動で生成・最適化する技術に取り組んでいます。この技術は、Generator(LLMで新しいワークフローのアイデアを出す)、Executor(アイデアを試す)、Evaluator(試した結果を評価する)、Memory(過去の経験から学習する)という4つの...
Pas encore de commentaire