Obtenez 3 mois à 0,99 $/mois + 20 $ de crédit Audible

OFFRE D'UNE DURÉE LIMITÉE
Page de couverture de 株式会社ずんだもん技術室AI放送局

株式会社ずんだもん技術室AI放送局

株式会社ずんだもん技術室AI放送局

Auteur(s): 株式会社ずんだもん技術室AI放送局
Écouter gratuitement

À propos de cet audio

AIやテクノロジーのトレンドを届けるPodcast。平日毎朝6時配信。朝の通勤時間や支度中に情報キャッチアップとして聞いてほしいのだ。(MC 月:春日部つむぎ、火水木:ずんだもん、金:お嬢様ずんだもん)
Épisodes
  • 株式会社ずんだもん技術室AI放送局 podcast 20251118
    Nov 17 2025
    youtube版(スライド付き) 関連リンク Agents 2.0: From Shallow Loops to Deep Agents AIエージェントは、近年非常に注目されている技術です。これまで主流だった「Agent 1.0(シャローエージェント)」は、AIモデルがユーザーの指示を受けてツールを使い、結果を返すというシンプルな仕組みで動いていました。例えば、「東京の天気は?」といった簡単な質問には素早く答えられます。 しかし、「10社の競合を調査して、比較表を作り、戦略レポートをまとめる」といった、何十ものステップが必要で数日かかるような複雑なタスクになると、Agent 1.0には限界がありました。AIモデルの一時的な記憶(コンテキストウィンドウ)がすぐにいっぱいになり、これまでの会話履歴や指示が消えてしまったり、本来の目標を見失ったり、間違った方向に進んで戻れなくなったりすることが多々ありました。まるで、一度にたくさんのことを覚えられない新人さんのように、情報過多で混乱してしまっていたのです。 この課題を解決するために登場したのが、「Deep Agents(Agent 2.0)」という新しい考え方です。Deep Agentsは、単に反応するだけでなく、より能動的に問題を解決するためのアーキテクチャを持っています。その鍵となるのが、以下の4つの柱です。 明示的な計画 (Explicit Planning): AIエージェントが漠然と考えるのではなく、まるでToDoリストを作るように具体的な計画を立て、実行します。途中で何かに失敗しても、計画を見直して修正することで、タスク全体を見失わずに進められます。階層的な役割分担(サブエージェント) (Hierarchical Delegation): 複雑なタスクを、一つのエージェントが全てこなすのではなく、「司令塔」となるエージェントが、「調査担当」や「プログラミング担当」といった専門の「サブエージェント」に仕事を割り振ります。各サブエージェントは自分の専門分野に集中し、その結果だけを司令塔に報告することで、効率よく役割分担ができます。永続的な記憶 (Persistent Memory): AIモデルの一時的な記憶だけに頼らず、ファイルやデータベースといった外部の記憶装置に中間結果や重要な情報を保存します。これにより、必要な情報をいつでも取り出せるようになり、記憶の限界を突破します。詳細な指示(コンテキストエンジニアリング) (Extreme Context Engineering): AIモデルが賢くなったからといって、簡単な指示だけで動くわけではありません。「いつ計画を立てるか」「どんな時にサブエージェントに仕事を任せるか」「ツールの使い方」など、非常に具体的で詳細な指示をAIモデルに与えることで、複雑な行動を精密にコントロールします。 Deep Agentsは、これらの工夫を通じて、AIエージェントが数秒で終わるタスクだけでなく、数時間や数日かかるような、より大規模で複雑な問題にも挑戦できるようになることを目指しています。これは、AIモデル自体の性能向上だけでなく、そのモデルをいかに効果的に設計し、活用するかの「エンジニアリング」の重要性を示唆しています。AIエージェントは、ただの「反応するプログラム」から「能動的に問題を解決するパートナー」へと進化していると言えるでしょう。 引用元: https://www.philschmid.de/agents-2.0-deep-agents Claude Code on the Web を超える!? Codex Cloud の実践テク5選 Web上で動くAIエージェントは、自分のパソコン環境(ローカル環境)と完全に分かれているため、とても便利ですが、使う上での制約もあります。例えば、「どうやって開発を進めるかの計画が立てにくい」「AIが作った設計書の確認が難しい」「ローカル環境との連携がスムーズにいかない」といった悩みを持つエンジニアもいるかもしれません。 この記事では、OpenAIが開発したクラウドベースのAIコーディングエージェント「Codex Cloud」を使うことで、これらの悩みを解決し、効率的に開発を進める実践的な方法が紹介されています。高機能なWeb上のAIエージェント「Devin」は月額500ドルかかる場合がありますが、Codex CloudはChatGPTの有料プランがあれば利用できるため、手軽に始められるのが大きな魅力です。 Codex Cloudは、インターネット上の安全な隔離された環境で動作し...
    Voir plus Voir moins
    Moins d'une minute
  • マジカルラブリー☆つむぎのピュアピュアA.I.放送局 podcast 20251117
    Nov 16 2025
    関連リンク Anthropic社の「Code Execution with MCP」が示す未来 ―― ツールコール時代の終焉と、エージェント設計の次 Anthropic社が提唱する「Code Execution with MCP」は、AIエージェントの設計方法を大きく変える新しいアプローチです。これまでの「ツールを直接呼び出す」方式が抱えていた問題を解決し、より効率的で将来性のあるAIエージェントの構築を可能にします。 MCP(Model Context Protocol)は、AIがデータベースや外部サービスなどのツールと連携するための標準化された仕組みで、AIの「USBポート」のようなものです。これにより、様々なAIモデルで共通の方法で外部ツールを利用できるようになります。 しかし、従来のAIエージェント開発では、全てのツール定義や処理の途中経過をAIへの指示(コンテキスト)に詰め込みすぎていました。この方法では、AIが処理する情報量(トークン)が異常に増え、コスト高や処理遅延の原因となっていました。「質問に答えるだけで15万トークンも消費した」という報告もあり、大規模なエージェントシステムでは限界が見えていました。 この問題を解決するため、Anthropic社が提案したのが、「ツールを直接呼ぶのではなく、AIが自分でコードを生成し、そのコードを実行する」という「Code Execution × MCP」のアプローチです。この仕組みでは、AIは以下の手順で動作します。 エージェントは、利用可能なツールの「ファイル構造」だけを把握します。必要なツールが出てきたら、そのツールのコードファイルを動的に読み込みます。これにより、全てのツール定義をAIに最初から渡す必要がなくなります。AIは、ユーザーの要求に応じてPythonやTypeScriptなどのコードを生成します。生成されたコード内で、MCPで標準化されたツールを「コード部品」のようにimportして利用します。データの加工や繰り返し処理といった中間的な作業は、AIが書いたコード側で完結させます。AIには最終的な結果だけが伝えられ、AIは「何をすべきか」という意思決定に集中します。 この新しい方法により、AIに渡す情報量が劇的に削減され、実際の運用コストや応答速度が大幅に改善されます(最大98.7%のトークン削減例も報告されています)。 このアプローチが「次の標準」となる理由は、まず、AIエージェントが複雑化しても、必要な情報だけを動的に読み込むため、システムが破綻しにくい点です。次に、多様なAIモデルに対応できる「コードファイル」という共通形式でツールを扱えるため、特定のモデルに依存しない汎用的な開発が可能です。そして、AI(意思決定)、MCP(接続の標準化)、コード(具体的な処理と制御)という明確な役割分担がなされ、大規模なAIエージェントの効率的な設計・運用に適しています。 これからAIエージェント開発に携わる新人エンジニアの皆さんは、「コード実行を前提とした設計」を意識することをおすすめします。ツールを個別のコードファイルとして整理し、AIには意思決定を任せることで、効率的で持続可能なAIエージェントを構築できるでしょう。この「ツールコール時代は終わり、エージェントはコードを書く」という変化を理解し、実践することが、これからのAI開発で一歩先を行くための鍵となります。 引用元: https://zenn.dev/hatyibei/articles/6b26d6bd27a9c2 ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025 この発表は、おしゃべりAIサービス「Cotomo」の開発経験に基づき、ステートレスな大規模言語モデル(LLM)を使って、あたかも記憶を持っているかのように振る舞うステートフルなAIエージェントをどう構築するかについて解説しています。 まず、LLMは基本的に「ステートレス」であり、以前の会話を記憶しません。APIへの各呼び出しは独立しています。しかし、モデル自体が学習データから得た「静的な知識」と、プロンプトとして与えられた「短期的な記憶(コンテキスト)」は利用できます。私たちが普段使うChatGPTのような対話AIは、このステートレスなLLMの内部で会話履歴を管理し、記憶があるかのように見せているのです。 AIエージェントに「記憶」を持たせるには、いくつかの技術的な工夫が必要...
    Voir plus Voir moins
    Moins d'une minute
  • 私立ずんだもん女学園放送部 podcast 20251114
    Nov 13 2025
    youtube版(スライド付き) 関連リンク Let AI do the hard parts of your holiday shopping Googleは、ホリデーシーズンに向けてAIとエージェント技術を駆使した革新的なショッピングツールを発表しました。これにより、買い物の「面倒な部分」をAIが担い、ユーザーはより賢く、ストレスなく商品を見つけられるようになります。日本の新人エンジニアの皆さんにも理解しやすいよう、主要な機能をご紹介します。 検索での対話型AIショッピング: Google検索の「AIモード」が強化され、まるで友達に話すように自然な言葉で欲しいものをAIに伝えられます。「暖かいセーター」といった具体的なリクエストにも対応。AIは「Shopping Graph」(500億以上の商品データベース)から、価格、レビュー、在庫などの最新情報を整理して提示。画像や比較表で分かりやすく表示し、素早い選択を支援します。 Geminiアプリでのショッピング機能拡張: GoogleのAIアシスタント「Gemini」アプリにもショッピング機能が統合されました。買い物のアイデア出しから商品探しまでGeminiがサポート。Shopping Graphからの信頼性の高い商品リストや価格情報などをアプリ内で提供します(米国で提供開始)。 エージェントAIによる近隣店舗の在庫確認: 「欲しい商品が近くの店にあるか知りたい」時、「Let Google Call」機能を使えば、AIがユーザーに代わって近隣店舗に電話し、在庫状況や価格を確認。Googleの「Duplex技術」と最新のGeminiモデルが支え、ユーザーは電話を待つことなく、メールやテキストで結果を受け取れます。米国の一部カテゴリーで順次展開されます。 エージェントAIによる最適な価格での自動購入(Agentic Checkout): この「agentic checkout」機能は、狙った価格になったら欲しかった商品を自動で購入する仕組みです。ユーザーが商品の詳細と希望価格を設定すると、予算内になった際に通知。対象の販売者の場合、ユーザーの許可を得てGoogleがGoogle Payを使って自動的に商品を購入。最適なタイミングを逃さず賢く買い物が可能です。 これらのAI活用による新しいショッピング体験は、日々の買い物をよりスマートで快適なものに変えるでしょう。忙しいエンジニアの皆さんにとって、時間を節約しつつ賢い選択をするための強力なツールとなりそうです。 引用元: https://blog.google/products/shopping/agentic-checkout-holiday-ai-shopping/ 会話型AIエージェントでFunction Callingを使いこなす! tacomsのMorixさんが、飲食店向け電話注文受付AIエージェント「Camel AI Call」の開発を通じて得た、LLMのFunction Calling活用術と課題解決策を共有しています。Function Callingは、LLMが外部のシステム(データベースやAPIなど)と連携して、情報を取得したり特定の処理を実行したりするための重要な機能です。例えば、ユーザーの質問に応じて天気情報を取得するツールをLLMが呼び出す、といった使われ方をします。 この機能を使う上で遭遇する主な課題と、その解決策は以下の通りです。 期待するツールをLLMが呼んでくれない場合: 複数のツールがあるときに、ユーザーの発話に対して意図しないツールが呼ばれたり、全く呼ばれなかったりすることがあります。 解決策: LLMに最初に与える「システムプロンプト」で、いつどのツールを呼ぶべきかを具体的に指示します。さらに、ユーザーの新しい発話のたびに、その時点の会話状況や必要なツール呼び出しルールを「動的プロンプト」としてLLMに毎回伝えることで、LLMが状況を忘れずに正確にツールを選べるようになります。 ツール実行後のLLMの動作を制御できない場合: ツールが成功したときは結果を答えてほしいが、失敗したときは謝罪して電話を切ってほしい、といったような、ツール実行後のLLMの次のアクションを細かく制御したいときに問題が発生します。 解決策: ツールの実行結果を返すJSONデータに「ai_instruction」という特別なフィールドを追加します。このフィールドに「この結果を使って回答を生成せよ」や「謝罪してから次のツールを実行せよ」といった具体的な指示を記述します。そして、システムプロンプトなどで「ai_instructionの指示には必ず従うこと」とLLMに伝えておくことで、意図...
    Voir plus Voir moins
    Moins d'une minute
Pas encore de commentaire