
Benchmarking Domain Intelligence | Data Brew | Episode 45
Échec de l'ajout au panier.
Échec de l'ajout à la liste d'envies.
Échec de la suppression de la liste d’envies.
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
In this episode, Pallavi Koppol, Research Scientist at Databricks, explores the importance of domain-specific intelligence in large language models (LLMs). She discusses how enterprises need models tailored to their unique jargon, data, and tasks rather than relying solely on general benchmarks.
Highlights include:
- Why benchmarking LLMs for domain-specific tasks is critical for enterprise AI.
- An introduction to the Databricks Intelligence Benchmarking Suite (DIBS).
- Evaluating models on real-world applications like RAG, text-to-JSON, and function calling.
- The evolving landscape of open-source vs. closed-source LLMs.
- How industry and academia can collaborate to improve AI benchmarking.