Page de couverture de Brain Inspired

Brain Inspired

Brain Inspired

Auteur(s): Paul Middlebrooks
Écouter gratuitement

À propos de cet audio

Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.© 2019 Brain-Inspired Science
Épisodes
  • BI 219 Xaq Pitkow: Principles and Constraints of Cognition
    Aug 27 2025

    Support the show to get full episodes, full archive, and join the Discord community.

    The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.

    Read more about our partnership.

    Sign up for Brain Inspired email alerts to be notified every time a new Brain Inspired episode is released.

    To explore more neuroscience news and perspectives, visit thetransmitter.org.

    Xaq Pitkow runs the Lab for the Algorithmic Brain at Carnegie Mellon University. The main theme of our discussion is how Xaq approaches his research into cognition by way of principles, from which his questions and models and methods spring forth. We discuss those principles, and In that light, we discuss some of his specific lines of work and ideas on the theoretical side of trying understand and explain a slew of cognitive processes. A few of the specifics we discuss are:

    • How when we present tasks for organisms to solve, they use strategies that are suboptimal relative to the task, but nearly optimal relative to their beliefs about what they need to do - something Xaq calls inverse rational control.
    • Probabilistic graph networks.
    • How brains use probabilities to compute.
    • A new ecological neuroscience project Xaq has started with multiple collaborators.
    • LAB: Lab for the Algorithmic Brain.
    • Related papers
      • How does the brain compute with probabilities?
      • Rational thoughts in neural codes.
      • Control when confidence is costly
      • Generalization of graph network inferences in higher-order graphical models.
      • Attention when you need.

    0:00 - Intro 3:57 - Xaq's approach 8:28 - Inverse rational control 19:19 - Space of input-output functions 24:48 - Cognition for cognition 27:35 - Theory vs. experiment 40:32 - How does the brain compute with probabilities? 1:03:57 - Normative vs kludge 1:07:44 - Ecological neuroscience 1:20:47 - Representations 1:29:34 - Current projects 1:36:04 - Need a synaptome 1:42:20 - Across scales

    Voir plus Voir moins
    1 h et 47 min
  • BI 218 Chris Rozell: Brain Stimulation and AI for Mental Disorders
    Aug 13 2025

    Support the show to get full episodes, full archive, and join the Discord community.

    We are in an exciting time in the cross-fertilization of the neurotech industry and the cognitive sciences. My guest today is Chris Rozell, who sits in that space that connects neurotech and brain research. Chris runs the Structured Information for Precision Neuroengineering Lab at Georgia Tech University, and he was just named the inaugural director of Georgia Tech’s Institute for Neuroscience, Neurotechnology, and Society. I think this is the first time on brain inspired we've discussed stimulating brains to treat mental disorders. I think. Today we talk about Chris's work establishing a biomarker from brain recordings of patients with treatment resistant depression, a specific form of depression. These are patients who have deep brain stimulation electrodes implanted in an effort to treat their depression. Chris and his team used that stimulation in conjunction with brain recordings and machine learning tools to predict how effective the treatment will be under what circumstances, and so on, to help psychiatrists better treat their patients. We'll get into the details and surrounding issues. Toward the end we also talk about Chris's unique background and path and approach, and why he thinks interdisciplinary research is so important. He's one of the most genuinely well intentioned people I've met, and I hope you're inspired by his research and his story.

    • Structured Information for Precision Neuroengineering Lab.
    • Twitter: @crozSciTech.
    • Related papers
      • Cingulate dynamics track depression recovery with deep brain stimulation.
    • Story Collider: Wired Lives

    0:00 - Intro 3:20 - Overview of the study 17:11 - Closed and open loop stimulation 19:34 - Predicting recovery 28:45 - Control knob for treatment 39:04 - Historical and modern brain stimulation 49:07 - Treatment resistant depression 53:44 - Control nodes complex systems 1:01:06 - Explainable generative AI for a biomarker 1:16:40 - Where are we and what are the obstacles? 1:21:32 - Interface Neuro 1:24:55 - Why Chris cares

    Voir plus Voir moins
    1 h et 47 min
  • BI 217 Jennifer Prendki: Consciousness, Life, AI, and Quantum Physics
    Jul 30 2025

    Support the show to get full episodes, full archive, and join the Discord community.

    The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.

    Read more about our partnership.

    Sign up for Brain Inspired email alerts to be notified every time a new Brain Inspired episode is released.

    To explore more neuroscience news and perspectives, visit thetransmitter.org.

    Do AI engineers need to emulate some processes and features found only in living organisms at the moment, like how brains are inextricably integrated with bodies? Is consciousness necessary for AI entities if we want them to play nice with us? Is quantum physics part of that story, or a key part, or the key part? Jennifer Prendki believes if we continue to scale AI, it will get us more of the same of what we have today, and that we should look to biology, life, and possibly consciousness to enhance AI. Jennifer is a former particle physicist turned entrepreneur and AI expert, focusing on curating the right kinds and forms of data to train AI, and in that vein she led those efforts at Deepmind on the foundation models ubiquitous in our lives now.

    I was curious why someone with that background would come to the conclusion that AI needs inspiration from life, biology, and consciousness to move forward gracefully, and that it would be useful to better understand those processes in ourselves before trying to build what some people call AGI, whatever that is. Her perspective is a rarity among her cohorts, which we also discuss. And get this: she's interested in these topics because she cares about what happens to the planet and to us as a species. Perhaps also a rarity among those charging ahead to dominate profits and win the race

    • Jennifer's website: Quantum of Data.
    • The blog posts we discuss:
      • The Myth of Emergence
      • Embodiment & Sentience: Why the Body still Matters
      • The Architecture of Synthetic Consciousness
      • On Time and Consciousness
      • Superalignment and the Question of AI Personhood.

    Read the transcript.

    0:00 - Intro 3:25 - Jennifer's background 13:10 - Consciousness 16:38 - Life and consciousness 23:16 - Superalignment 40:11 - Quantum 1:04:45 - Wetware and biological mimicry 1:15:03 - Neural interfaces 1:16:48 - AI ethics 1:2:35 - AI models are not models 1:27:13 - What scaling will get us 1:39:53 - Current roadblocks 1:43:19 - Philosophy

    Voir plus Voir moins
    1 h et 49 min
Pas encore de commentaire