Controlling AI Models from the Inside
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
As generative AI moves into production, traditional guardrails and input/output filters can prove too slow, too expensive, and/or too limited. In this episode, Alizishaan Khatri of Wrynx joins Daniel and Chris to explore a fundamentally different approach to AI safety and interpretability. They unpack the limits of today’s black-box defenses, the role of interpretability, and how model-native, runtime signals can enable safer AI systems.
Featuring:
- Alizishaan Khatri – LinkedIn
- Chris Benson – Website, LinkedIn, Bluesky, GitHub, X
- Daniel Whitenack – Website, GitHub, X
Upcoming Events:
- Register for upcoming webinars here!
Pas encore de commentaire