Deterministic by Design: Why "Temp=0" Still Drifts and How to Fix It
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
Send us a text
Why do LLMs still give different answers even with temperature set to zero? In this episode of The Second Brain AI Podcast, we unpack new research from Thinking Machines Lab on defeating nondeterminism in LLM inference. We cover the surprising role of floating-point math, the real system-level culprit, lack of batch invariance, and how redesigned kernels can finally deliver bit-identical outputs. We also explore the trade-offs, real-world implications for testing and reliability, and how this breakthrough enables reproducible research and true on-policy reinforcement learning.
Sources:
- Defeating Nondeterminism in LLM Inference
- Non-Determinism of “Deterministic” LLM Settings
Pas encore de commentaire