E54: Why AI Masters Shakespeare but Fails at Simple Math
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
In this episode of HD/Cast, we delve into the surprising challenges that advanced AI models face with basic grade-school math. Despite their prowess in complex tasks like writing sonnets and real-time translations, these models often stumble over simple word problems. A recent study from Apple reveals why: AI models excel at pattern matching but struggle with true logical reasoning. We explore the GSM-Symbolic benchmark and the profound limitations it exposes, discussing why AI falls short when faced with varied and unexpected math challenges. Join us as we uncover what this means for the future of AI reasoning. Source: GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Pas encore de commentaire