OFFRE D'UNE DURÉE LIMITÉE. Obtenez 3 mois à 0,99 $/mois. Profiter de l'offre.
Page de couverture de Season 4 | Episode 4 - Pam Harris, Exploring the Power & Purpose of Number Strings

Season 4 | Episode 4 - Pam Harris, Exploring the Power & Purpose of Number Strings

Season 4 | Episode 4 - Pam Harris, Exploring the Power & Purpose of Number Strings

Écouter gratuitement

Voir les détails du balado

À propos de cet audio

Pam Harris, Exploring the Power & Purpose of Number Strings ROUNDING UP: SEASON 4 | EPISODE 4 I've struggled when I have a new strategy I want my students to consider and despite my best efforts, it just doesn't surface organically. While I didn't want to just tell my students what to do, I wasn't sure how to move forward. Then I discovered number strings. Today, we're talking with Pam Harris about the ways number strings enable teachers to introduce new strategies while maintaining opportunities for students to discover important relationships. BIOGRAPHY Pam Harris, founder and CEO of Math is Figure-out-able™, is a mom, a former high school math teacher, a university lecturer, an author, and a mathematics teacher educator. Pam believes real math is thinking mathematically, not just mimicking what a teacher does. Pam helps leaders and teachers to make the shift that supports students to learn real math. RESOURCES Young Mathematicians at Work by Catherine Fosnot and Maarten Dolk Procedural fluency in mathematics: Reasoning and decision-making, not rote application of procedures position by the National Council of Teachers of Mathematics Bridges number string example from Grade 5, Unit 3, Module 1, Session 1 (BES login required) Developing Mathematical Reasoning: Avoiding the Trap of Algorithms by Pamela Weber Harris and Cameron Harris Math is Figure-out-able!™ Problem Strings TRANSCRIPT Mike Wallus: Welcome to the podcast, Pam. I'm really excited to talk with you today. Pam Harris: Thanks, Mike. I'm super glad to be on. Thanks for having me. Mike: Absolutely. So before we jump in, I want to offer a quick note to listeners. The routine we're going to talk about today goes by several different names in the field. Some folks, including Pam, refer to this routine as “problem strings,” and other folks, including some folks at The Math Learning Center, refer to them as “number strings.” For the sake of consistency, we'll use the term “strings” during our conversation today. And Pam, with that said, I'm wondering if for listeners, without prior knowledge, could you briefly describe strings? How are they designed? How are they intended to work? Pam: Yeah, if I could tell you just a little of my history. When I was a secondary math teacher and I dove into research, I got really curious: How can we do the mental actions that I was seeing my son and other people use that weren't the remote memorizing and mimicking I'd gotten used to? I ran into the work of Cathy Fosnot and Maarten Dolk, and [their book] Young Mathematicians at Work, and they had pulled from the Netherlands strings. They called them “strings.” And they were a series of problems that were in a certain order. The order mattered, the relationship between the problems mattered, and maybe the most important part that I saw was I saw students thinking about the problems and using what they learned and saw and heard from their classmates in one problem, starting to let that impact their work on the next problem. And then they would see that thinking made visible and the conversation between it and then it would impact how they thought about the next problem. And as I saw those students literally learn before my eyes, I was like, “This is unbelievable!” And honestly, at the very beginning, I didn't really even parse out what was different between maybe one of Fosnot's rich tasks versus her strings versus just a conversation with students. I was just so enthralled with the learning because what I was seeing were the kind of mental actions that I was intrigued with. I was seeing them not only happen live but grow live, develop, like they were getting stronger and more sophisticated because of the series of the order the problems were in, because of that sequence of problems. That was unbelievable. And I was so excited about that that I began to dive in and get more clear on: What is a string of problems? The reason I call them “problem strings” is I'm K–12. So I will have data strings and geometry strings and—pick one—trig strings, like strings with functions in algebra. But for the purposes of this podcast, there's strings of problems with numbers in them. Mike: So I have a question, but I think I just want to make an observation first. The way you described that moment where students are taking advantage of the things that they made sense of in one problem and then the next part of the string offers them the opportunity to use that and to see a set of relationships. I vividly remember the first time I watched someone facilitate a string and feeling that same way, of this routine really offers kids an opportunity to take what they've made sense of and immediately apply it. And I think that is something that I cannot say about all the routines that I've seen, but it was really so clear. I just really resonate with that experience of, what will this do for children? Pam: Yeah, and if I can offer an additional ...
Pas encore de commentaire