Las Redes Generativas Adversarias (GAN) son un tipo de algoritmo de aprendizaje automático que usa un enfoque de aprendizaje adversarial. Imagínate un falsificador y la policía jugando un juego de gato y ratón. Eso es básicamente lo que pasa con las GAN: dos partes, un generador y un discriminador, compiten entre sí.
La fuente de YouTube de DeepBean explica este concepto de manera sencilla usando esta analogía. También habla de la modelización generativa y cómo las GAN le entran al problema de las constantes de normalización intratables. Además, explican la función de pérdida que se usa para entrenar las GAN y cómo se relaciona con el juego de suma cero o minimax. También mencionan algunos problemas comunes que pueden surgir al entrenar las GAN, como el colapso de modo y los gradientes que se desvanecen.
Por otro lado, la fuente de IBM Technology también describe la naturaleza adversarial de las GAN. Ellos destacan cómo se usan las GAN para generar imágenes y también mencionan otros casos de uso, como la predicción de fotogramas de video y la mejora de imágenes.