Obtenez 3 mois à 0,99 $/mois + 20 $ de crédit Audible

OFFRE D'UNE DURÉE LIMITÉE
Page de couverture de Choses à Savoir CERVEAU

Choses à Savoir CERVEAU

Choses à Savoir CERVEAU

Auteur(s): Choses à Savoir
Écouter gratuitement

À propos de cet audio

Pour tout comprendre, jour après jour, sur le fonctionnement du cerveau. Textes de Christophe Rodo, neuroscientifique, jusqu’en septembre 2024.

Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Choses à Savoir
Science
Épisodes
  • La musique peut-elle modifier nos souvenirs ?
    Nov 21 2025

    Oui, la musique peut réellement modifier nos souvenirs — pas seulement les raviver, mais aussi les transformer. C’est ce que montre une étude menée par des chercheurs de l’Institut de Technologie de Géorgie (Georgia Institute of Technology), publiée en 2023 dans la revue Nature Communications.


    Les neuroscientifiques y ont observé comment la musique influence la consolidation et la précision des souvenirs. L’expérience reposait sur un protocole simple : des volontaires devaient mémoriser des images pendant qu’ils écoutaient différentes séquences sonores — certaines musicales, d’autres neutres ou discordantes. Les chercheurs ont ensuite évalué, plusieurs heures plus tard, la fidélité des souvenirs associés à ces images.


    Résultat : la musique émotionnellement marquante modifiait la trace mnésique. Lorsqu’un morceau suscitait une émotion positive ou nostalgique, le souvenir devenait plus vivace, plus riche en détails. En revanche, une musique triste ou dissonante pouvait brouiller la mémoire d’origine, en y introduisant une coloration émotionnelle différente. Autrement dit, le souvenir se “réécrivait” partiellement, sous l’influence du ressenti musical.


    L’équipe dirigée par le Dr Caitlin Mullins a utilisé l’imagerie cérébrale (IRM fonctionnelle) pour comprendre le mécanisme. Elle a observé une coopération accrue entre l’amygdale, qui traite les émotions, et l’hippocampe, le centre de la mémoire épisodique. Cette synchronisation neuronale, induite par la musique, favorise à la fois la réactivation et la “mise à jour” du souvenir. Le cerveau, en quelque sorte, reconsolide la mémoire en y intégrant l’émotion du moment présent.


    Les chercheurs comparent ce phénomène à un processus d’édition : chaque fois que l’on se remémore un événement accompagné de musique, on le réimprime avec une nouvelle encre émotionnelle. Cela explique pourquoi une chanson peut nous replonger dans un souvenir heureux, mais aussi pourquoi, avec le temps, ce souvenir peut se teinter d’une nuance différente selon notre état émotionnel.


    En conclusion, selon l’étude du Georgia Institute of Technology, la musique ne se contente pas d’être une bande sonore de nos souvenirs : elle en est aussi un outil de réécriture. À chaque écoute, le cerveau réactive, colore et modifie subtilement le passé, prouvant qu’en matière de mémoire, rien n’est jamais complètement figé.

    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

    Voir plus Voir moins
    2 min
  • Qu'est-il arrivé au cerveau d'Albert Einstein ?
    Nov 19 2025

    Le 18 avril 1955, Albert Einstein meurt à l’hôpital de Princeton, à 76 ans. Son cerveau est alors retiré lors de l’autopsie par le pathologiste Thomas Stoltz Harvey. L’organe, pesant environ 1 230 grammes, est fixé au formol, photographié sous plusieurs angles, puis découpé en près de 240 fragments. Chaque morceau est conservé ou envoyé à des chercheurs, accompagnés d’une carte précise indiquant leur origine anatomique. Ce prélèvement fut réalisé sans autorisation préalable, ce qui provoqua une controverse. Harvey obtint ensuite, rétroactivement, l’accord du fils d’Einstein, à condition que les analyses servent uniquement la science.


    Les premières observations ont révélé un cerveau plutôt normal par sa taille, mais singulier par sa structure. Les photographies étudiées en 2012 ont montré que les lobes frontaux d’Einstein présentaient un nombre inhabituel de circonvolutions et une asymétrie marquée entre les hémisphères. Le cortex préfrontal, siège de la planification et du raisonnement abstrait, apparaissait particulièrement développé. Les lobes pariétaux — impliqués dans les capacités visuospatiales et mathématiques — étaient également plus complexes que la moyenne, avec des plis supplémentaires qui augmentent la surface corticale disponible pour le traitement de l’information.


    Sur le plan microscopique, la biologiste Marian Diamond, de l’Université de Californie à Berkeley, publia en 1985 une étude comparant des coupes du cerveau d’Einstein à celles d’hommes du même âge. Elle observa un ratio plus élevé de cellules gliales par neurone dans la zone pariétale gauche, une région associée au raisonnement spatial et symbolique. Les cellules gliales assurant la nutrition et la protection des neurones, certains chercheurs y ont vu un indice d’activité métabolique soutenue — bien que l’échantillon soit trop limité pour en tirer des conclusions générales.


    D’autres travaux, en 2013, ont porté sur le corps calleux, le pont de fibres reliant les deux hémisphères. Il était plus épais qu’en moyenne dans plusieurs segments, suggérant une communication interhémisphérique particulièrement dense. Cela pourrait avoir favorisé une meilleure intégration entre intuition spatiale (droite) et logique analytique (gauche).


    En résumé, le cerveau d’Einstein se distinguait par certaines particularités anatomiques : plis corticaux atypiques, forte densité gliale locale, connexions interhémisphériques marquées. Mais les scientifiques restent prudents : il n’existe pas de “cerveau du génie” type. L’intelligence d’Einstein résidait sans doute autant dans sa curiosité, son imagination et sa persévérance que dans la forme de ses circonvolutions.

    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

    Voir plus Voir moins
    3 min
  • Que subit votre cerveau quand vous mangez des aliments transformés ?
    Nov 17 2025

    Dès la première bouchée d’un biscuit industriel ou d’un plat prêt-à-réchauffer, le cerveau entre en scène. Les aliments ultra-transformés (AUT) — riches en sucres rapides, graisses, sel et additifs — activent rapidement les circuits de la récompense, notamment au niveau du système mésolimbique. Selon une revue de l’Université du Michigan, ces aliments « frappent » le cerveau de manière rapide et intense, stimulant les zones impliquées dans le plaisir, la motivation et l’apprentissage. Résultat : une forte libération de dopamine, comparable à celle observée avec certaines substances addictives. On ressent du plaisir, ce qui incite à recommencer, jusqu’à ce que le cerveau en fasse une habitude automatique.


    Mais le plaisir n’est qu’une partie de l’histoire. Une étude publiée en 2025 dans Nature Mental Health a montré que les personnes consommant le plus d’aliments ultra-transformés présentaient des altérations des zones sous-corticales du cerveau, notamment le noyau accumbens et l’hypothalamus — deux régions essentielles au contrôle de la faim et de la satiété. Le cerveau perd alors une partie de sa capacité à réguler le comportement alimentaire : la partie rationnelle (celle qui dit “stop”) devient moins influente face à la récompense immédiate.


    D’autres recherches mettent en évidence des effets inflammatoires. Une revue parue en 2024 dans la revue Nutrients (MDPI) a montré que les AUT favorisent la neuroinflammation et le stress oxydatif. Ces processus entraînent une fragilisation des neurones et altèrent la communication entre différentes zones cérébrales. Autrement dit, les aliments ultra-transformés créent un environnement chimique hostile dans lequel le cerveau fonctionne en surrégime, mais avec moins d’efficacité.

    Sur le long terme, ces modifications ne sont pas anodines. Une étude publiée dans JAMA Neurology en 2022 a suivi plus de 10 000 adultes pendant dix ans.


    Résultat : les gros consommateurs d’aliments ultra-transformés présentaient un risque de démence supérieur de 25 % et un risque de déclin cognitif accéléré. La mémoire et les fonctions exécutives (concentration, planification, autocontrole) semblent particulièrement touchées.


    Bonne nouvelle, pourtant : le cerveau reste plastique. En réduisant la part d’aliments ultra-transformés et en réintroduisant des produits bruts — fruits, légumes, grains entiers, légumineuses —, on peut rééquilibrer les circuits de la récompense et diminuer l’inflammation cérébrale. Autrement dit, le cerveau peut se réparer. Mais il réclame qu’on le traite comme un chef-d’œuvre biologique, pas comme une poubelle à calories rapides.

    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

    Voir plus Voir moins
    2 min

Article vedette: Les 15 meilleurs balados scientifiques à écouter

Les meilleurs balados sur l'univers scientifique sont sur Audible. Découvrez une mise en lumière de grands chercheurs, des débats passionnés, mais aussi les actualités du monde scientifique sous un nouvel angle. Grâce à cette sélection spéciale des meilleurs podcasts scientifiques, devenez expert du monde de la santé et des sciences!

Pas encore de commentaire