Page de couverture de ML - EP 12 : डीप लर्निंग बनाम पारंपरिक मशीन लर्निंग: एक तुलना

ML - EP 12 : डीप लर्निंग बनाम पारंपरिक मशीन लर्निंग: एक तुलना

ML - EP 12 : डीप लर्निंग बनाम पारंपरिक मशीन लर्निंग: एक तुलना

Écouter gratuitement

Voir les détails du balado

À propos de cet audio

मशीन लर्निंग (एमएल) के दो मुख्य उपक्षेत्रों, पारंपरिक मशीन लर्निंग और डीप लर्निंग के बीच अंतरों की तुलना करता है। यह स्पष्ट करता है कि पारंपरिक एमएल, जिसमें पर्यवेक्षित, अप्रत्यवेक्षित और सुदृढीकरण शिक्षण शामिल है, अक्सर फ़ीचर इंजीनियरिंग पर निर्भर करता है और छोटे डेटासेट के साथ काम कर सकता है। इसके विपरीत, डीप लर्निंग, जो तंत्रिका नेटवर्क की बहुस्तरीय संरचनाओं से प्रेरित है, को स्वचालित रूप से सुविधाओं को सीखने के लिए बड़े डेटासेट और महत्वपूर्ण कंप्यूटेशनल शक्ति की आवश्यकता होती है। यह लेख सीएनएन (कनवोल्यूशनल न्यूरल नेटवर्क) और आरएनएन (रिकरेंट न्यूरल नेटवर्क) जैसे विभिन्न डीप लर्निंग आर्किटेक्चर को भी प्रस्तुत करता है और डेटा उपलब्धता, हार्डवेयर प्रगति, और एल्गोरिथम नवाचारों के कारण डीप लर्निंग के उदय की व्याख्या करता है।

Pas encore de commentaire