
MLG 007 Logistic Regression
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/7. See Andrew Ng Week 3 Lecture Notes
Overview- Logistic Function: A sigmoid function transforming linear regression output to logits, providing a probability between 0 and 1.
- Binary Classification: Logistic regression deals with binary outcomes, determining either 0 or 1 based on a threshold (e.g., 0.5).
- Error Function: Uses log likelihood to measure the accuracy of predictions in logistic regression.
- Gradient Descent: Optimizes the model by adjusting weights to minimize the error function.
- Classification: Predicts a discrete label (e.g., a cat or dog).
- Regression: Predicts a continuous outcome (e.g., house price).
- Train on a dataset of house features to predict if a house is 'expensive' based on labeled data.
- Automatically categorize into 0 (not expensive) or 1 (expensive) through training and gradient descent.
- Neurons in Neural Networks: Act as building blocks, as logistic regression is used to create neurons for more complex models like neural networks.
- Composable Functions: Demonstrates the compositional nature of machine learning algorithms where functions are built on other functions (e.g., logistic built on linear).
Ce que les auditeurs disent de MLG 007 Logistic Regression
Moyenne des évaluations de clientsÉvaluations – Cliquez sur les onglets pour changer la source des évaluations.
Il n'y a pas encore de critiques pour ce titre.