
MLG 008 Math
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/8
Mathematics in Machine Learning- Linear Algebra: Essential for matrix operations; analogous to chopping vegetables in cooking. Every step of ML processes utilizes linear algebra.
- Statistics: The hardest part, akin to the cookbook; supplies algorithms for prediction and error functions.
- Calculus: Used in the learning phase (gradient descent), similar to baking; it determines the necessary adjustments via optimization.
- Recommendation: Learn the basics of machine learning first, then dive into necessary mathematical concepts to prevent burnout and improve appreciation.
- MOOCs: Khan Academy - Offers Calculus, Statistics, and Linear Algebra courses.
- Textbooks: Commonly recommended books for learning calculus, statistics, and linear algebra.
- Primers: Short PDFs covering essential concepts.
- The Great Courses: Offers comprehensive video series on calculus and statistics. Best used as audio for supplementing primary learning. Look out for "Mathematical Decision Making."
- Tensor: General term for any dimension list; TensorFlow from Google utilizes tensors for operations.
- Efficient computation using SimD (Single Instruction, Multiple Data) for vectorized operations.
- Gradient descent used for minimizing loss function, known as convex optimization. Recognize keywords like optimization in calculus context.
Pas encore de commentaire