
The Riemann Integral Part 4 - Monotonicity of the integral
Échec de l'ajout au panier.
Veuillez réessayer plus tard
Échec de l'ajout à la liste d'envies.
Veuillez réessayer plus tard
Échec de la suppression de la liste d’envies.
Veuillez réessayer plus tard
Échec du suivi du balado
Ne plus suivre le balado a échoué
-
Narrateur(s):
-
Auteur(s):
À propos de cet audio
This episode is focussing on a different sort of monotonicity compared to the notions we have used before. Here, we view the integral as a mapping assigning numbers to (Riemann integrable) functions. Monotonicity of the integral then means that non-negative functions are mapped to non-negative numbers. Or, in other words, if one function is smaller than another; their respective integrals can be compared the same way. In related contexts such mappings on functions are also called positive. As an application, we provide a fundamental inequality for the integral — a continuous variant of the triangle inequality: The modulus of the integral of a function is bounded above by integral of the modulus of the said function.
Ce que les auditeurs disent de The Riemann Integral Part 4 - Monotonicity of the integral
Moyenne des évaluations de clientsÉvaluations – Cliquez sur les onglets pour changer la source des évaluations.
Il n'y a pas encore de critiques pour ce titre.